How to do a factor analysis with the psych package
نویسنده
چکیده
3 Item and scale analysis 5 3.1 Dimension reduction through factor analysis and cluster analysis . . . . . . 5 3.1.1 Minimum Residual Factor Analysis . . . . . . . . . . . . . . . . . . . 7 3.1.2 Principal Axis Factor Analysis . . . . . . . . . . . . . . . . . . . . . 8 3.1.3 Weighted Least Squares Factor Analysis . . . . . . . . . . . . . . . . 8 3.1.4 Principal Components analysis (PCA) . . . . . . . . . . . . . . . . . 14 3.1.5 Hierarchical and bi-factor solutions . . . . . . . . . . . . . . . . . . . 14 3.1.6 Item Cluster Analysis: iclust . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Confidence intervals using bootstrapping techniques . . . . . . . . . . . . . 21 3.3 Comparing factor/component/cluster solutions . . . . . . . . . . . . . . . . 21 3.4 Determining the number of dimensions to extract. . . . . . . . . . . . . . . 27 3.4.1 Very Simple Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.2 Parallel Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5 Factor extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
منابع مشابه
How To: Use the psych package for Factor Analysis and data reduction
4 Basic data analysis 7 4.1 Getting the data by using read.file . . . . . . . . . . . . . . . . . . . . . . . 7 4.2 Data input from the clipboard . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.3 Basic descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.4 Simple descriptive graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.4.1 Scatter Plot M...
متن کاملPackage ‘ random . polychor . pa ’
Description The Function performs a parallel analysis using simulated polychoric correlation matrices. The nth-percentile of the eigenvalues distribution obtained from both the randomly generated and the real data polychoric correlation matrices is returned. A plot comparing the two types of eigenvalues (real and simulated) will help determine the number of real eigenvalues that outperform rand...
متن کاملAn introduction to the psych package: Part II Scale construction and psychometrics
4 Item and scale analysis 9 4.1 Dimension reduction through factor analysis and cluster analysis . . . . . . 10 4.1.1 Minimum Residual Factor Analysis . . . . . . . . . . . . . . . . . . . 12 4.1.2 Principal Axis Factor Analysis . . . . . . . . . . . . . . . . . . . . . 13 4.1.3 Alpha Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.4 Weighted Least Squares Factor Anal...
متن کاملAn overview of the psych package
4 Item and scale analysis 15 4.1 Dimension reduction through factor analysis and cluster analysis . . . . . . 15 4.1.1 Item Cluster Analysis: ICLUST . . . . . . . . . . . . . . . . . . . . 17 4.1.2 Minimum Residual Factor Analysis . . . . . . . . . . . . . . . . . . . 18 4.1.3 Principal Axis Factor Analysis . . . . . . . . . . . . . . . . . . . . . 22 4.1.4 Weighted Least Squares Factor Analysi...
متن کاملTitle a Parallel Analysis with Polychoric Correlation Matrices
Description The Function performs a parallel analysis using simulated polychoric correlation matrices. The nth-percentile of the eigenvalues distribution obtained from both the randomly generated and the real data polychoric correlation matrices is returned. A plot comparing the two types of eigenvalues (real and simulated) will help determine the number of real eigenvalues that outperform rand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013